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Abstract 

At the present time RANS calculations are widely used to determine the time averaged flow over bodies 
of arbitrary shape. However they do not provide the time dependent or spectral information required for 
the analysis of ship hull vibration, radiated noise and sonar performance. The objective of this study is to 
calculate space time velocity correlation functions and surface pressure wavenumber spectra in turbulent 
shear flows using information from time averaged RANS calculations, so that the details of high fidelity 
time averaged flow can be applied to hydroacoustic and structural vibration problems. 

Recent advances in numerical techniques have resulted in efficient methods for calculating the Reynolds 
average statistics of the flow around most bodies. These calculations provide the mean, time invariant 
flow as well as the local turbulent kinetic energy and dissipation. However they provide no information 
on the higher order statistics or spectral content of the unsteady part of the flow. For many applications, 
especially those involving sound radiation, the local turbulent kinetic energy does not provide the 
information that is required. Ideally, a procedure for estimating the two point correlation function of the 
velocity fluctuations throughout the flow is needed. 

In a recent study (Glegg et a/(2010)), a method for calculating the surface pressure spectra below a 
turbulent boundary layer was developed which is based on the solution to the unsteady Euler equations 
and the Reynolds averaged Navier Stokes equations. It was shown that the unsteady velocity in a two 
dimensional linearized shear flow could be modeled using a distribution of vortex sheets. Each vortex 
sheet is convected at the local mean flow speed and its distribution can be used to specify all three 
components of the turbulent flow. The unsteady pressure, the two point velocity correlation functions, the 
turbulent kinetic energy and surface pressure wavenumber spectra was obtained directly from this 
equation in terms of the mean square value of the vortex sheet strength. Since RANS calculations give the 
distribution of turbulent kinetic energy in the flow, it was possible to invert the spatial distribution of 
turbulent kinetic energy to obtain the vortex sheet strength, and use the result to calculate all the statistical 
details of the unsteady flow. However, in this approach the specification of a turbulent energy spectrum 
that scales on the dissipation length scale was required and this is difficult to model universally. 

In the first part of this study (see Part la) the linearized approach described above was extended to 
turbulent flows in two dimensional wakes described by the Orr Sommerfeld equations. Wake flows are 
more challenging than two dimensional boundary layers because the flow is continuously evolving in the 
downstream direction in a self similar manner. The theory was modified to allow for self similarity and 
the results were compared to experimental data of the two point velocity correlation functions in turbulent 
wakes (Devenport et al, 2001) with some success. 

This approach is then used to predict rotor stator interaction noise that is caused by the wakes from 
upstream blades impinging on downstream stator vanes. The turbulence modeling developed in Part la is 
used in Part lb to specify the turbulence in the inflow to the stators. Acoustic predictions show how the 
sound radiation is affected by the cutting angle of the wake relative to the leading edge of the blades. 

In the second part of this report (Part II) the acoustic radiation from a turbulent flow over a step is 
analyzed. This work helps to explain some of the differences between the measurements by Catlett (2010) 
in a companion study at Virginia Tech and the LES based predictions presented by Ji and Wang(2010). 
The previous studies of the problem had used a low frequency approximation for the Greens function. 
The work presented here shows that, at the frequencies and flow Mach numbers considered by 
Catlett(2010), the low frequency approximation leads to incorrect predictions of the far field sound. The 



exact Greens function for a step is given in Part II of this report and the importance of the diffracted field 
is identified. 

Part III of this report focuses on flat plate boundary layers and the flow downstream of a forward facing 
step as measured Dr. William Devenport in a companion study at Virginia Tech. The previous analyses 
used the inviscid form of the linearized equations of motion to model the turbulent flow and in the last 
year the modeling has been improved to include viscous terms. In addition the non linear interactions are 
included as source terms for fully developed turbulence. The results have been compared to the 
experimental measurements reported by Awasthi et al (2011) and predictions are made of the velocity 
spectra and the surface pressure spectra. 
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Part la: I urhuk'nee Modeling for a Plane Wake 

1.1 Introduction 

In a recent study (Glegg et a/(2010)), a method for calculating the surface pressure spectra below a 
turbulent boundary layer was developed which is based on the solution to the unsteady Euler equations 
and the Reynolds averaged Navier Stokes equations. It was shown that the unsteady velocity in a two 
dimensional linearized shear flow could be modeled using a distribution of vortex sheets. Each vortex 
sheet is convected at the local mean flow speed and its distribution can be used to specify all three 
components of the turbulent flow. The unsteady pressure, the two point velocity correlation functions, the 
turbulent kinetic energy and surface pressure wavenumber spectra was obtained directly from this 
equation in terms of the mean square value of the vortex sheet strength. Since RANS calculations give the 
distribution of turbulent kinetic energy in the flow, it was possible to invert the spatial distribution of 
turbulent kinetic energy to obtain the vortex sheet strength, and use the result to calculate all the statistical 
details of the unsteady flow. However, in this approach the specification of a turbulent energy spectrum 
that scales on the dissipation length scale was required and this is difficult to model universally. 

In the first part of this study the approach described above was extended to turbulent flows in two 
dimensional wakes. Wake flows are more challenging than two dimensional boundary layers because the 
flow is continuously evolving in the downstream direction in a self similar manner. The theoretical 
approach was modified to allow for self similarity and the results were compared to experimental data of 
the two point velocity correlation functions in turbulent wakes (Devenport et al, 2001) with some success. 

1.2 Theory for the turbulence of a wake flow 

We will consider small velocity perturbations (u,v,w) in a parallel shear flow defined, in catesian 
coordinates (x.y.z), by the mean velocity U(y) in the x direction (see figure 1). The linearized 
form of the Navier Stokes equations and the continuity equation can be used to obtain the Orr 
Sommerfeld equation for the upwash component of the velocity (see for example Hallbäck 1996) 

(1) 

>'- 
d2U & 

dy2 dx 
— V4v = 0 
R, 

For a turbulent flow which is time stationary, but may not be homogeneous in the x direction, we 
will consider the solution of this equation in the form 

(2) 
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where a„ are the eigenvalues of the solution and are assumed to be slowly varying in the flow 
direction, so the flow is at least locally homogeneous. 

The other components of the velocity can be obtained by considering the vorticity in the y 
direction given by 



_ du    dw 

dz    dx 

(3) 

Combining this with the continuity equation (Hallback, 1996) then gives the mode shapes for the 
other two velocity components as 

.(») -/ -i (an-^ ßnw) w^=-^(ß^- + a„rjl")) 
A. dy dy 

where X'n = a] + ß1. To bring the system to closure we use the vorticity equation for the r/ 
component which gives 

(5) 
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and at high Reynolds number this gives 

dc dy „=i 

(6) 

The solution to this equation is then readily obtained by assuming that the vorticty is initially 
zero and gives the modes of the vorticity in terms of the upwash velocity modes 

(7) 
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Hence equations (2), (4) and (7) form a closed set of equations which can be solved to obtain 
each component of the velocity perturbations in terms of a single set of coefficients a„. The 
vorticity modes are dependent on x, but the x dependence is small for self similar flows (such as 
2D wakes,axisymetric wakes and mixing layers) which satisfy the condition that 

(8) 

U dy     A 

where W and A are constants and L is the wake width. 

The turbulent shear stresses can be obtained by taking the expected value of the velocity 
components and noting that if the mode amplitudes are uncorrelated then the velocities are 
statistically stationary in time and locally homogeneous in the x and z directions. We also need to 



integrate over all frequencies and spanwise wavenumbers to obtain the fluctuations at a point. 
Applying these steps leads to a description of the turbulent stress in the upwash direction as 

ff„O0=J   j I ArXO),ß)V^(y)dcodß ^"OOHv^OOl2 

similarly for the other two components of the flow we have, 
(10) 
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the shear stress is then 
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To a good approximation Re(£) =| S |2, so we can simplify (10) and specify the tke as 
(12) 
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If we can solve this equation for the unknown coefficients A„ then we can use the result to 
obtain each of the stresses and the two point correlation of the velocity fluctuations. For 
example the two point correlation of the upwash velocity is given as 

(13) 

*lT(v,/)= j   j £ Ar,(0),ßW")(y)v^(y')d0Jdß 
^o     -oo      »=l 

The analysis given above describes how all the turbulent flow quantities of interest can be 
specified in terms of a single set of mode amplitudes A„ . To bring the system to closure it is 
necessary to invert any one of the above equations to obtain the mode amplitudes. However the 
mode amplitudes are also dependent on the frequency and the spanwise wavenumber and so it is 
also necessary to assume so form for the energy distribution of the turbulence. 

1.3 Approximate Solution for the Continuous Modes 

In many flows, especially the wake flow which is of interest here, we can make the 
approximations that the Reynolds number is very large and that A2„U » d2U /8y2and so the last 



two terms in equation (1) are small in comparison with the other terms giving the approximate 
equation 

(14) 
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The solution to this equation is obtained directly using 
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from which it follows that 
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where y„ is the solution to the equation co=anU(yn) , G(ylyn) is the Greens function for Poissons 
equation which satisfies the boundary conditions of the flow, and u. is a scaling factor determined 
by (2) and is 
  (17) 
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It is then relatively simple to complete the integrals needed in equations (9)-(13) using these 
modes and the approach given by Glegg et al 2009. 

1.4 Determination of Mode Amplitudes 

One of the important features of the turbulent velocity modes in the wake is that they can also be 
used to define the turbulent kinetic energy the wake, as given by equation (12). The turbulent 
kinetic energy is an output from RANS calculations and so, in principle, we can estimate A„ if 
if"' and Vn> are known. The approach used here is the solve the Orr Sommerfeld equations for 
the wake flow to obtain the modes, and use these as a basis for solving of the mode coefficients. 
However, some additional modeling is required to give the spectral content of the modes. To 
achieve this we assume that the coefficients An(ü),ß) can be written as the product of a universal 
energy spectrum E(XL) and a mode amplitude in the form 

(18) 

An((o,ß) = ÄnEa„L) K=yla2
n+ß2 

The universal energy spectrum is modeled by a von Kaiman energy spectrum (see Glegg et al 
(2008)) and is consistent with the energy cascade of turbulent scales. It depends on a lengthscale 



L which also has to be modeled or calculated from the dissipation in the RANS calculation 
(Glegg et al (2008)). If the turbulent kinetic energy is known at>>m locations in the flow and the 
mode-shapes are determined by the solution to the Orr Sommerfeld equation then we can use a 
collocation scheme to determine the mode amplitudes by solving the equation 

(19) 
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Once these coefficients have been determined it is possible to predict all the two point statistics 
of the flow and the turbulent velocity spectra. 

1.5 Numerical Verification of Results 

This approach has been used to analyze the turbulent flow in a blade wake based on the 
measurements of Devenport et al (2001). These give the details of all three velocity components, 
their two point statistics and spectra as a function of y and x for the wake behind a NACA 0012 
airfoil at zero angle of attack at a Reynolds number of 3.28x105 . The turbulent kinetic energy 
(tke) distributions are given at multiple locations downstream of the trailing edge and these are 
found to be self similar and to collapse onto a single line as shown in figure 2. Using the 
approach given above the mode amplitudes are obtained from the distribution of tke and are 
shown in figure 3. To verify that the approach is valid we have used these mode amplitudes to 
calculate the distributions of turbulent stresses ow and Gm, and the two point correlation function 
RJyAy) of the velocity in the y direction at different reference locations y across the wake. The 
results are shown in figures 4-6 and are successfully compared to experimental results. Figure 6 
is a good test of the approach because the correlation function is not symmetric for reference 
locations that are displaced from the wake centerline. 

In Figures 7 and 8 the estimated spectra of the v and u velocity components are given, and show 
reasonable agreement with the measurements. 

1.6 Conclusions 

In this study we have developed a method for extracting two point statistics from the distribution 
of turbulent kinetic energy in self similar flows. The approach is to develop a modal description 
of the turbulent velocity fluctuations based on the solution to the Orr Sommerfeld equation and 
use this to model the distribution of turbulent kinetic energy within the flow in terms of a set of 
unkown coefficients. If the distribution of the tke is available, either from measurements or 
RANS calculations, then the model can be inverted to obtain the unknown coefficients. 

This approach has been applied to the flow in a turbulent wake based on the measurements of 
Devenport et al 2001 with very encouraging results. The model has successfully predicted the 
turbulent stresses and the two point correlation function of the upwash velocity fluctuations. 



Part IbrTurbulence Modeling for Rotor Stator Interaction Noise 

1.7 Introduction 
Turbomachinery broadband noise is often dominated by the turbulence in the rotor wakes 
interacting with downstream stator vanes. The accepted approach for analyzing this problem is to 
model the turbulence incident on the stator vanes by a locally homogeneous turbulent flow 
whose spectrum can be defined by a von Kaiman or Liepmann model, with a specified 
turbulence intensity and length scale. This is a very simplistic model of the complex turbulent 
flow downstream of a rotor, which is dominated by rotating wake flows, secondary flows and 
end wall effects. In an earlier paper Glegg and Devenport (2001(b)) proposed a more general 
approach to turbulence modeling in complex flows based on proper orthogonal decomposition of 
the unsteady flow incident on the stator. The limitation of this approach was the determination of 
the proper orthogonal modes. In this paper we will revisit this problem and show how the modes 
of the flow can be obtained from the solutions to the linearized Navier Stokes equations, or in the 
case of quasi two dimensional flows, the Orr Sommerfeld equations. We will illustrate the 
procedure by showing results for a simple idealized model of an oblique blade wake interaction. 

1.8 Sound Radiation from an Oblique Blade Wake Interaction 

An oblique blade wake interaction occurs when the wake from an upstream blade is cut by a 
downstream blade at an angle, as is typical of a rotor wake stator blade interaction. The wake is 
modeled with a two dimensional mean flow profile which does not vary along the wake axis, and 
the cutting angle is defined as the angle between the spanwise coordinate of the blade and the 
axis of the wake (see Figure 1). The wake coordinates are specified as (x,y,z) and the mean flow 
velocity in the wake is U(y) in the direction of the x coordinate. The blade is defined in terms of 
coordinates (xb,yb,zb) where xh is the chordwise direction and yb is the spanwise direction. The 
acoustic field from the blade wake interaction can be calculated from the unsteady loading on the 
blade surface, which, in ducted fan applications, can be coupled with the duct modes using the 
approach given by Glegg and Walker (1999). Here we will simplify the problem by considering 
the radiation from the blade in the absence of the duct. This gives an idealization of a rotor wake 
stator interaction which is suitable for identifying the principle features of turbulent wake flow 
that cause broadband fan noise from rotor stator interactions, without the complexity introduced 
by the blade response function for a high solidity stator in a duct. 

Amiet (1974) gives the solution to the general problem of an unsteady flow incident on a blade 
in a uniform mean flow. The acoustic field is defined in terms of the unsteady loading on the 
blade surface, which is determined by the blade response to a harmonic gust. If the incoming 
gust has an upwash component on zb-0 of the form 

we -iai+iy,ljch+ivyk 

then Amiet's blade response function gives the unsteady loading on the blade as 

10 



F(xb,yb,t) = w0g{x„,Y0,v)e •icoi+ivyh 

For the oblique blade wake interaction problem we will model the unsteady flow in the wake by 
the solution to the Orr Sommerfeld equation for the unsteady flow in the wake. This gives a 
modal solution for the unsteady flow in the wake, which is of the form 

oo "" • 

u(*,v,z,0 = X  J   | an{öi,ß)vtn\y,Q),ß)e i(Oi+ian(x).x+ißz dßdco 

where ajx) are the eigenvalues of the solution and can be assumed to be slowly varying in x, and 
u"1' are the eigenvectors or modes of the solution. This expansion of the velocity has some 
important features that follow from the statistical nature of the turbulent flow. We can assume 
that the turbulent velocity fluctuations are stationary in time and homogeneous in the z direction. 
Within the limit that an(x) is slowly varying we can also assume that the turbulent velocity 
fluctuations are homogeneous in the direction of the flow. It follows that the coefficients 
an(0),ß)&re. uncorrelated for different values of n,6>and /Jand consequently, that the uncorrelated 
modes for the wake flow are 

u""(y)e 
•iW+ian(x)x+ißl 

We can then proceed to analyze the oblique blade wake interaction problem in exactly the same 
way as was done by Glegg and Devenport (2001(a)), defining the upwash from the mode 
velocity and the cutting angle of the wake, and calculating the unsteady load and the acoustic 
radiation for each mode independently to give the acoustic pressure at an observer located at x as 
p'"'(\,(o). Since each mode is uncorrelated the spectral density of the acoustic pressure is 

•VX'W) = Z   J   AS<o,ß)\p[nXx,(0)\2dß An((0,ß) = ^Ex[\an(0),ß)\2) 

The important feature of this result is that the acoustic field for each mode can be readily 
calculated, and the characteristics of the acoustic field can be related to the features of each 
mode, but it remains to determine the mode amplitudes. 

1.9 Acoustic Predictions 

Using the results of Part 1(a) it is possible to carry out acoustic predictions for the sound 
radiation from a blade wake interaction at different cutting angles. In figure 9 we show some 
preliminary results of the effect of cutting angle on the far field noise. We note that as the cutting 
angle is reduced the radiated sound level is increased significantly. This is caused by two 
different effects. First, at smaller cutting angles the wetted surface area of the blade wake 
interaction is larger, and secondly the upwash is impacted by different components of the 
turbulent velocity as the cutting angle is changed. For a perpendicular blade wake interaction 
(90 deg cutting angle) the upwash on the blade is determined by the z component of the 
turbulence in the wake. For a 45 deg cutting angle the upwash is determined equally by the z and 
the y component of the upwash. To accurately assess the importance of the cutting angle on the 

II 



radiated noise it is necessary to determine the relative amplitude and wavenumber spectra of 
these two different velocity components. The modeling approach described here allows this to be 
done by utilizing the solution to the Orr Sommerfeld equation for the unsteady flow in the wake. 
This is a far more robust approach than one that assumes a homogeneous turbulent flow model. 

1.10 Conclusions 

This paper describes a new approach for describing inflow turbulence for leading edge noise 
problems. The unsteady inflow is modeled by the Navier Stokes equations linearized relative to 
the mean flow velocity. The resulting solutions give the relative magnitudes of all velocity 
components throughout the flow, and this provides a model of the local tke in the flow that can 
be matched to the tke calculated by RANS models. The resulting unsteady flow model can then 
be used to carry out acoustic predictions of leading edge noise. This approach has been shown to 
successful match measurements of two point correlations and spectra of the turbulent flow in the 
wake of a NACA 0012 airfoil, and the application to leading edge noise has been demonstrated. 
The extension of this method to ducted flows and the wake of a rotor is also possible based on 
the model of the linearized flow in a circular duct given by Atassi (2005). 
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• fan) 

Figure 1: the coordinate system for a simple wake incident on an isolated blade 
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Figure 2: The collapse of the tke in a turbulent wake behind a NACA 0012 airfoil as a function of 
displacement from the centerline. The data is self similar an collapses on the wake half width L. The mean 
line is the data fit obtained from the modal solution. 

x 10 

05 

Figure 3: The mode amplitudes calculated from the distribution of kinetic energy 
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Figure 4: The estimated distribution of u2 across the wake. 
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Figure 5: The estimated distribution of v2 across the wake. 
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Figure 6: The two point correlation function Rn.(y,Ay) for different reference locations v across the wake 
(a) \=0.5L, (b) \=L (c) x=2L 
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Figure 7: The spectra G„ at two different locations across the wake, (a) y=L (b) y=2L 
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Figure 8: The spectra G„„ at two different locations across the wake, (a) y=L (b) y=2L 
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Figure 9: Predicted acoustic spectra for leading edge noise from an oblique blade wake interaction. Spr is 
given in dB with an arbitrary reference. Flow Mach number is 0.5. 
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Part 2: The Tailored Greens Function for a Step 

2.1 Introduction 

In a recent article Ji and Wang(2010) described detailed Large Eddy Simulations (LES) of boundary layer 
flows over forward and backward facing steps. One of the objectives of this study was the calculation of 
the sound radiated by the interaction of the flow with the step. To carry out their calculations Ji and Wang 
made use of Howe's(1989) low frequency approximation for the Greens function tailored to the step 
geometry. This Greens function gives a far field directionality that is equivalent to a streamwise dipole 
and predicts there will be a null in the acoustic far field for an observer directly above the step. In contrast 
experimental measurements (Farabee and Zoccola(1998), Catlett(2010)) indicate that this is not the case 
and the directionality of the sound is relatively weak at low frequencies. Catlett(2010) also observed that 
there was an interference effect in the spectrum at high frequencies that could not be predicted by the low 
frequency approximation. In this paper the far field approximation for the Greens function tailored to the 
step geometry will be derived by applying the Weiner Hopf method. The result shows that the sound in 
the acoustic far field is only equivalent to a dipole at very low frequencies, and it has very different 
characteristics at higher frequencies. The far field sound spectrum can also be estimated and it is shown 
that the interference effect observed by Catlett(2010) is correctly indentified. 

2.2 The Greens Function 

The geometry for a step of height b is shown in Figure 1 in terms of the Cartesian coordinates (yi.y:,ys). 
The origin of the coordinate system is at the bottom of the step and the surface is defined by y:=0, yt>0 
and y2=b,yi<0. To calculate the far field Greens function we will use the adjoint method, which utilizes 
the principle of reciprocity. In this approach the source is placed at a location in the acoustic far field and 
the observer is placed in the vicinity of the step. The advantage of using this method is that the adjoint 
Greens function can be obtained by calculating the field scattered by the step due to sound from the far 
field source, and, local to the step, the incident field is well approximated by a plane wave. The Greens 
function for the source close to the step and the far field observer is then simply the adjoint Greens 
function with the source and observer positions reversed. 

In the adjoint problem the source is placed at X) and the incident wave is given by 
exp(ikr-ik.XiyJ/47tr where r=\\\ is the distance of the source from the bottom of the step and k is the 
acoustic wavenumber at the frequency ft). The adjoint Greens function which satisfies the non penetration 
boundary conditions on j^=fl is then given by 

tkr-ikx^y^/r-ikxjyj Ir 

G0(yi\xi) = 
2nr 

cos(hc2y2 / r) r »I y I 

(1) 

To satisfy the boundary conditions on the step we need to add solutions that correct for the non 
penetration boundary condition on the surfaces y2=b,yi<0 and Q<y2<b, y/=0. We will treat these as the 
sum of two separate corrections G/ and G:. First we define G/ as the solution that corrects G„ to match the 
boundary conditions on the upper surface of the step, so it has the boundary conditions (sec figure 2) 

(2) 
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dG, 
= 0 

v,=0 
dy2     dy2 

= 0 
v-, =^.Vi <0 

Secondly we define G2 as the solution that corrects G0+Gi to match the boundary conditions on the face 
of the step, so it has the boundary conditions (see figure 3) 

(3) 
dG2 = 0 

dG2 

dy, 
= 0 

v, =*.>•, <0 

dG„    dG,    dG, —- + —L + —- 
dy,      dy,      dy. 

= 0 
0<v, <*.>, =0 

The solution for G/ is obtained from the result given by Noble(1958) for the scattering of sound by a semi 
infinite two dimensional duct. If we represents the Greens function G„ as the sum of two waves incident 
from the angles Öand -0, where cosOcos<ft=x/r, sin£teos0=vyr and sin^=jc/r. Then we can write 

(4) 

G0 = A(e -iJt„v, cosö-tVt,,)^ sin(? + e -ikl,yl cosd+ik0y2 sinö A = 
ik^r-ikx^y^/r 

Anr 
kn =kün<j) 

and use the result given by Noble (1958) for scattering of plane waves by two semi infinite planes. The 
result is given by Noble's equation 3.25 as 

G, =• 
ft 

J   S_(a)E(yy2)e-'"y'da E(yy2) = 
•cosh(yy2)e -yh 

s\nh(yb)e •r>t 

0<y2<b 

b<y2 

(5) 

and 

5_(a) = 
isin6s\n(kobsin0) 

L+(a)L_{a) = 

b(\ + cos0)L+(ko cos0)L_(cc)(a - kn)(cc - k0 cos6) 

smh(yb)e'yh 

yb 

i xl/2 / xl/2 

(6) 

(7) 

The choice of branch cut for the square roots is important and we choose the branches where 
Re((CfctA„) )>0. The subscripts ± represent functions which are analytic for Im(a) greater than or less 
than zero respectively, and specifics of L. and L. will be discussed later. 

The next step is to determine the second correction which ensures the velocity on the step face is zero. We 
note that the sum of G„ and G/ result in waves which propagate from right to left along the duct defined 
by 0<y:<b, y/<0 ( see Figure 3). To cancel the velocity at \>i=0 we introduce a wave which propagates 
from left to right along the duct so that the boundary condition is satisfied. The new wave will also be 
transmitted across the duct termination and propagate out of the duct and so will affect the region of 
interest. This problem is also discussed by Noble and for a wave Bncos(rm(yrb)/b)exp(iKnvi), (where 
K„=(kn

:-(nn/b):)1'"', and has a positive imaginary part) propagating along the duct. The acoustic field is 
given by Noble equation (3.34) as 

(8) 
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c,= 

I*. 

and 

cos(nn(y2-b)/b)e'K"y 

+ ^-(k„ + Kn)L_(-Kn) j 
In 

(a + k0)L+(a)cosh(yyj)e_ia^da 

\,r      y(a + K:„)sinh(yfc) 

0 < y2 < b 

oo f 'U wt" 

7(a + /c„) 

(9) 

v, >b 

To obtain the unknown coefficients B„ we evaluate the field in the ducted region. Noble shows that by 
evaluating equation (4) we have 

(10) 

K + G, L = I Cm C0S(m/r(j2 - *> / *)*-*"» 

where Cm represents the residue at the poles of the integrand of (5) which lie in the upper half of the 
complex plane and are given in the appendix. Similarly we can evaluate (8) in the ducted region. The 
solution includes the waves propagating from left to right and the waves which are reflected from the duct 
termination at yi=0, and can be expressed as 

(ID 

[G2 L, <M <0 = II Bn (5„y *- + Rmie-^ )cos(mn(y2 -b)lb) 

where the reflection coefficients Rm„ are also given in the appendix. Using (10) and (11) in the last of the 
boundary conditions (3) and equating terms gives 

(12) 

I Bn(Smn-Rmn) = C^ 
n=0 

If this series is truncated to a finite number of terms then this equation can be solved for the coefficients 
B„, giving the complete solution for Gj. 

2.3 Approximate Solutions 

At very low frequencies we can show that L+(k0)~l and B„~C(/2=A and. Also the series expansion for G: 

is dominated by the n=0 term and so for y2>b we can approximate 
(13) 

G      -iAkJ 7   L^le-^-r^da 
K J Y 

Applying the same approximations to Gt in the region v^>b , and utilizing equation (7) gives 
(14) 
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G,= 
iAkob(l-cos0) I yL+(a) 

r (a-*„)(a-*0cosö) 
-/OV|-)'(.>;-/>) dor 

At moderate frequencies where k0b=l the situation is quite different. In this case we find from numerical 
evaluation that B„~C„ and that B„«B„, but we can not approximate the other terms. Then, for yj>b we 
obtain 

G = -2iAsm(kobsin0)L_(-k„) °T   W^-ri»-*)^ 
2     Ksin6L+(k0co$6)L_(k0) J+,r     y 

and 

G, = /M«) //4sinösin(/:0^sinö) 
K{\ + cos$)L+(kecosö) J+.r  (a-&0)(a-A:0cosö) 

-iav,-)'()'2-6) ^a 

(15) 

(16) 

and we note that the scaling on k„ and directionality associated with these functions is quite different from 
the low frequency approximation. 

2.5 Discussion 

The sound radiation from turbulent flow near rigid surfaces can be evaluated by using Lighthills acoustic 
analogy. The sound sources are specified by Lighthills stress tensor and the acoustic field is given by 
(Goldstein (1976)) 

(17) 

p'cl{xt,(o) = \Tij{yi,(o)-^-dV 

where G is a tailored Greens function that satisfies the non penetration boundary condition on all the 
surfaces. The radiation efficiency of the sound sources is therefore given by 8'G/dvidy/ ,which, for flow 
over a step is given by the Greens function defined above. If we evaluate d'Gt/dyidyj it is found that the 
acoustic radiation scales as k~ and this leads to a source of quadrupole order. In contrast if we evaluate 
frGi/dyf we find that this simple scaling is not present. If we model the Lighthills stress tensor for a 
turbulent eddy convetced in the vv direction as 

(18) 
TIJ(y„Q)) = fi/

a>><uö(y2-hy 

where h>b then, and ( is a length scale, then using the low frequency approximations we obtain 

r-2iAkobL+(0)/U)f 
(19) 

p'c;(x„a))~ 
V Yo 

\(-(co/u)2fn-i(co/u)rafn + Y:ti) 

(l-cosfl)(aj/£/ + £„) 

(<o / U - kocos0) 
-r„\h-b) 

where 
(21) 
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yo = sl(0)/U)2-kf, 

At very low Mach numbers where 0)/U»ko we can approximate yo~(0/U and it follows that 

p'co
2U,.,0))«(-2Mit0ftcosö)(0>£/f/)L+(a>/{/)(-7;i-if12 + f22) 

(22) 

First we note that this result has the characteristics of a streamwise dipole, scaling with k„ and having a 
directionality of cosö. The scaling on flow speed can be obtained by noting that Ty scales as pU: and k„ 
scales as Mco/U where M=U/c0, and c0 is the speed of sound. Then at constant Strouhal number (cob/U) 
the acoustic pressure scales as U3 and the acoustic power output scales as U6. 

For the higher frequencies the scaling is quite different. Equations (15) and (16) show that the scaling on 
frequency depends on sm(k0bsir\6) and L,(kacosff), so the field no longer has the characteristics of a 
dipole. 

The complete characteristics of the directionality of the sound generated by flow over a step can be 
calculated directly from 

(23) 

p'c;l(x,,o)) = 

HAsmes'mi^bsindXco/U + kJ 
r'X 

Bn(Kn+k0)(co/U + k0)bL_(-icn) 
(\+cos0)L+(kocos6)(co/U-kocos0)     ^ (0)/U + Kn) 

x(nyo)L+(co/U)(-(a>/U)2fu -i(0)/U)y„f[2+y:f22)e-^ />-/>> 

This result has been evaluated to show the directionality of the sound field at different non dimensional 
frequencies kob=0.01,0.1,1. For a backward facing step in a low Mach number flow (M=0.02) are shown 
in figure 4. At low frequencies the directionality has a minimum at 0=90° and is similar to a dipole 
orientated in the direction of the flow. At high frequencies the directionality is impacted by interference 
effects and is almost omnidirectional. Similar results are shown for a forward facing step in Figure 5, 
(obtained from equation (23) with U replaced by -U) and it is hard to distinguish the difference. However 
at higher Mach numbers (A/=0.2) the directionality is different as shown in figures 6 and 7, and the effect 
of flow direction is more marked with nulls pointing towards the direction of the flow. 

Figure 8 shows the frequency dependence of the field at three different observer angles for a forward 
facing step at a Mach number of 0.2. It is impotant to note the interference dip that occurs when 
k„bcosd=7r and the lack of collapse of the acoustic efficiency onto a single curve. This indicates that 
scaling of experimental data on a single frequency parameter could be unsuccessful. 

In Figure 9 show the spectrum of the far field sound is shown assuming a source spectrum which scales as 
(k„h)"17 3 for an 11 mm step and observer positions that correspond to those measured by Catlett(2010). An 
arbitrary scaling factor has been added to align the plots so this is not an absolute prediction. However he 
spectra show the interference dip and resonances at frequencies above 10kHz which were observed 
experimentally by Catlett (2010) and there is some consistency between the measured levels at different 
angles at low frequencies. 
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2.6 Conclusion 

The results given above discuss the sound radiation from turbulent flow over a step. It is concluded that 
the sound radiation is a consequence of scattering mechanism that can be modeled from solutions 
presented by Noble for scattering by parallel semi infinite plates. At very low frequencies the far field 
sound has the characteristics of a streamwise dipole and the sound from turbulent flow in the vicinity of 
the step scales with the sixth power of the flow velocity. At higher frequencies the there interference 
effects become important and the spectrum exhibits an dip at angles where k„hsin9=im. The directionality 
and spectral characteristics are similar to those measured experimentally by Catlett(2010). 
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Appendix 

The coefficients Cm are obtained from (5) as 

_ 2Asin(/:ofosinö) 

" ~ knbsmOL+(k„cos0)L_(k„) 

-2 A sin 9 sin(k0b sin 9)L+(Km ){mnf  

Kmb(\ + cos0*Km -koca&0)(Km -ko)b
2L+(kocos6) 

Similarly we obtain for the reflection coefficient: 

•em(Km + ko)(Kn + k0)L_(-Kn)L+(Kj 

C = w>0 

R = 
KjKm+K„) 

where fm=/ for m>0 and e„=0.5. 

The Split Function 

Following Noble pi04 we can define the split function 
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Z.t(a) = \Y[{{{\-{kublnn)2)l2-iablnn}e'ahln 

xexp -i—{\-C + \n{2n I kBb)) + ab 12-{yb I n)cos-\a I k) 
K 

and L(a)=L4-cc). 
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far field source 

incident plane wave 

%. v, 

Figure 1: The coordinate system used to define the step and the adjoint problem 
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far field source 

3y, 
(G„ + G,) = 0 

Image source 

Figure 2: Schematic of the first decomposition which satisfies the boundary conditions on y2=b,yi<0 and 
y:=0,vi>0. 
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—(Go + G,+G2) = 0 

Figure 3: Schematic of the second problem that satisfies the boundary conditions on the face of the step. 
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Figure 4: The Directionality of sound from sources near a backward facing step at a Mach number of 
0.02. Levels are normalized by k„b and 50dB has been added to ensure positive values on all plots, -x-x- 
k„b=0.01, -o-o-kob=01, -+-+- k0b=l 
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Figure 5: The Directionality of sound from sources near a forward facing step at a Mach number of 0.02. 
Levels are normalized by k0b and 50dB has been added to ensure positive values on all plots, -x-x- 
kob=0.01, -o-o-k„b=01, -+-+-k0b=l 
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Figure 6: The Directionality of sound from sources near a backward facing step at a Mach number of 0.2. 
Levels are normalized by k„b and 50dB has been added to ensure positive values on all plots, -x-x- 
k„b=0.01, -o-o-k„b=01, -+-+- k„b=l 
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Figure 7: The Directionality of sound from sources near a forward facing step at a Mach number of 0.2. 
Levels are normalized by k„b and 50dB has been added to ensure positive values on all plots, -x-x- 
k„b=0.01, -o-o-kob=01, -+-+-k„b=l 
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Figure 8: The Greens function as a function of k0b for a forward facing step at a Mach number of 0.2 at 
three different angles 0=56.5°,82.5°J06°, and 128.5° 
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Far Field from a Forward Step of h = 11.7 mm and U   . = 60 m/s 
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Figure 9: Comparison of measurements by Catlett(2010) and the predictions based on the Greens function 
developed in this study. 
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Part 3: Predictions of Surface Pressure Spectra for a Turbulent Boundary 
Layer 

3.1 Introduction 

This part of the report will discuss a method for extracting velocity and surface pressure spectra 
associated with a high Reynolds number turbulent boundary layer. The approach is to develop a 
description of the turbulent velocity fluctuations based on the solutions to the Orr Sommerfeld 
and Squire equations and to use these to model the distribution of turbulent stresses within the 
flow in terms of a set of unknown coefficients. If the distribution of the turbulent stresses is 
available, either from measurements or RANS calculations, then the model can be inverted to 
obtain the unknown coefficients and closure is obtained. 

This approach has been applied to the flow in a turbulent boundary layer downstream of a 
forward facing step based on the measurements of Awasthi et al 2011. The modeling has 
identified terms associated with large scale structures in the flow and small scale turbulence, and 
an energy budget for each term has been obtained as shown in Figure 7. Another output of the 
model is the turbulent velocity spectra and these are compared to measured spectra at three 
heights above the wall in Figure 8. The interesting result is that by using the viscous equations 
with non linear interactions allowed for, the spectra are estimated over a wide range of 
frequencies without recourse to a modeled turbulence energy spectrum. 

3.2 Theoretical Background 

In the following we will consider methods for evaluating the unsteady part of a fully developed 
turbulent flow. We will limit consideration to incompressible constant temperature flows and 
assume that the mean flow is known from a solution to the Reynolds averaged Navier Stokes 
equations. The flow is defined by its steady velocity and pressure U and P and its unsteady 
velocity and pressure u and p. The equation of motion describing the unsteady flow is obtained 
by subtracting the Reynolds average equation for the steady flow from the full Navier Stokes 
equations, to give 

(1) 

— + (U.V)u + (u.V)U + - Vp - — V2u = -b V.u = 0 
dt p        R 

b = (u.V)u-((u.V)u) 

The left side of this equation is linear in the unsteady flow variables and the vector b specifies 
the contributions from the non linear terms. In the following we will also need a Poisson 
equation for the pressure, which is obtained in the usual way by taking the divergence of 
equation (1), and the vorticity equation, which is obtained fro the curl of equation (1) 
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We will consider velocity perturbations u=(u,v,w) in a parallel shear flow defined, in Cartesian 
coordinates (x,y,z) by the mean velocity U(y) in the x direction. The linearized form of the 
Navier Stokes equations and the continuity equation are used to obtain the Orr Sommerfeld 
equation (see for example Hallbäck 1996) by taking the Laplacian of (1) for the velocity 
component in the y direction, subtracting Poissons equation for the pressure, and ignoring the 
non linear term. However since the non linear terms are important in a fully developed turbulent 
flow we will retain them here to give an inhomogeneous form of the Orr Sommerfeld equation as 

(2) 

^(V2v) - U"^- - — V4v = -V2b + (V.b)' 
Dt dx    R, 

where the primes represent differentiation with respect to the v direction, Do/Dt=d/dt+Ud/dx, and 
b=(bx,by,b2). The u and w components of the velocity can be obtained by considering the vorticity 
in thej direction, given by q=du/dz-dw/dx, and the continuity equation (Hallback (1996)). The 
equations for the u and w velocity components are then given in terms of the normal velocity and 
the normal vorticity as 

(3) 
d'u    d2u _      d2v      dr\ d2w    d2w _     d2v     dr] 

dx2     dz2        dxdy    dz dx2     dz2        dzdy    dx 

To close this set of equations we use the vorticity equation to obtain an inhomogeneous form of 
Squires equation for the normal component of the vorticity as 

M__LvVt/'- = -vxb 
Dt      R, dz 

These homogeneous form of these equations have been considered by many different authors 
(see for example Drazin and Reid(1981), Hallback (1996) for reviews) to investigate flow 
instabilities and boundary layer transition. Solutions have been sought that identify the growth or 
decay of disturbances and it can be shown that, in the inviscid case, the amplitude of the normal 
component of the velocity grows linearly with time from an initial disturbance. Also it can be 
shown that a boundary layer flow will be unstable if the mean velocity profile includes a point of 
inflexion. However in this study we are interested in using linear theory to describe a high 
Reynolds number fully developed turbulent flow, which is characterized as stationary in time and 
homogeneous in the x and z directions. On this basis we will seek solutions in the 
frequency/wavenumber domain by considering the Fourier transform of all variables, defined as 

(5) 

f(y,0),a,ß) = —-J   J   J  f{x,y,zJ)e-'"-^cbcdzdt 
(2/r) 

-R    -R 

Taking the Fourier transform of the inhomogeneous Orr Sommerfeld and Squire equations then 
gives 

(6) 
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{aU + o))(v"-X2v)-aU"v-—(v""-2X2v" + A4v) = B 

(aU + co)fj + ßU'v -—{rj" - A2rj) = C 
Re 

X2=a2 + ß2 B = ik% + ab\ + ßb[ C = -ßbx+ab: 

and the u and w components of the velocity are defined as 

M = 
-i«xv'-ßfi) 

w = 
-i(ßv'+afi) 

T2 

(7) 

This provides a closed set of equations which may be solved to obtain all the velocity 
components of the flow in terms of the unknown functions B and C . We will start by solving for 
the normal velocity, which can be considered independently, and then consider the normal 
vorticity, which depends on the distribution of normal velocity. With these two results we can 
then obtain the velocity components parallel to the mean flow given by equation (7). 

3.3 The Normal Velocity 

In order to solve equation (6) we need to specify the details of the mean velocity profile in the 
boundary layer. This has a discontinuity in its slope at the interface between the viscous sublayer 
and the log layer, and so we will treat the viscous sublayer and the log layer as separate regions. 
In the viscous sublayer the non linear terms on the right of equation (6) can be considered small 
compared to the viscous terms, and the velocity profile is linear, so the equation (6) reduces to its 
homogeneous form and will depend on the boundary conditions on the surface and at the 
interface with the log layer. The OS equation is of fourth order and so four boundary conditions 
will be required to specify the flow in the viscous sublayer. These are that v and v' should be zero 
on the surface, and the v and v' should be continuous across the interface with the log layer 
where y=ys. 

In the log layer we will seek a solution using the Greens function for the OS equation which is 
the solution to 

(8) 

(aU + oi)(G"-X2G)-aU"G (G""-2A2G" + A4G) = 5(y-y,) 
R 

and satisfies the same boundary conditions as v at y=ys and at infinity. Giving the normal 
velocity as 

v(y) = \ ßCy.JG^Iy.Wy, 
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3.4 The Normal Vorticity 

The solution for the normal vorticity is obtained using the same approach as above. From the 
second equation in (6) we obtain 

fi = \ (C-ßU\yl)v(y[))Gn(y\y[)dyi 

where Gn is the Greens function that satisfies the equation 

((0 + aU)Gn(y\yl)-—(G;(y\yl)-X
2Gn(y\y])) = 8(y-yl) 

(10) 

(11) 

In this case there are two contributing source terms. The first is from the non linear term C that 
acts as a source of normal vorticity and the second is from the interaction term associated with 
the normal velocity. We can combine equations (9) and (11) for the interaction term to give 

(12) 

h=-j ky2)Gv(y\y2)dy2 

Gv(y\y2) = J /3f/,(y,)Gr)(yly,)G(ylly2Wy, 

3.5 The Greens Functions 

The Greens functions defined above are shown in figures 1 -3 for different frequencies and 
wavenumbers. In all cases the spatial resolution was set as dy-1/500 and the number of terms in 
the Fourier series expansion limited to 50. The boundary layer mean velocity profile was given 
by U=y"7, and the Reynolds number was 5xl0\ 

In figure 1 the Greens function for the OS equation and the interaction term are compared for a 
non dimensional frequency of a>=l and wavenumbers a=-1.285 and /J=l.It is seen that the 
impact of a source term (in this case the non linear term B) at any location y, has a non local 
impact on the flow, which indicates the possibility of a large scale structure. We note that at this 
frequency the interaction term that drives the normal vorticity is of a much lower level than than 
the Greens function driving the normal velocity. However at lower frequencies as shown in 
figure 2, the interaction term dominates. 

In figure 3 we show the Greens function for Squires equation that shows how the normal 
vorticity is driven by the non linear source term C. In this case we see that there is only a local 
reaction, and the impact of the source term is very local. This implies that this term is responsible 
for the small scale turbulence in the flow and is not associated with large scale structures. 
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3.5 Large scale Structures and Small Scale Turbulence 

In the previous section it was shown that the unsteady part of the Reynolds average equations 
can be solved by assuming that the non linear terms are small and act as sources of disturbance to 
the larger linear terms. By evaluation the solutions to these equations it was found that there are 
two components driving the flow, one that has a broad non local impact and another that only 
impacts the flow locally. In the following we will consider these two different terms as 
representing the large scale structures in the flow and the small scale turbulence. The small scale 
turbulence only couples with the vorticity normal to the wall and only has velocity components 
parallel to the wall. In contrast the large scale structures have velocity and vorticity components 
in all three directions. 

We will assume that the flow may be broken down into large scale structures and small scale 
turbulence, and that the large scale structures propagate with their own phase speed ck and that 
the non linear terms associated with each structure can be superposed such that 

(13) 
K 

B(t,x,y,z) = Yi AkBk(t-x,ck^y>z) 

where 0<ck<l, Ak represents the amplitude of the structure and Bk(t,y,z) is the distribution of the 
non linear terms for the large scale structure of order k. Using this model we can define the 
source terms in equation (6) as 

(14) 

B(y,co,a,ß) = £ AkBk{y,o),ß)ö(a + a Ick) 
k=] 

and it follows that the normal velocity is given by 

v(x,0=J   J  X \vk(y,a,ß)e-m'-x*tH*diodß 

(15) 

where 

n 

vk(y,0),ß) = J Bk(yrü),ß)[G(y Iy,^ dyt 

(16) 

Similar expression can be obtained for qv and the velocity components u and w by utilizing 
equation (12) and (7). 

Summarizing the results gives the velocity field as 

A. 

u(x,/) = £ Akuk(t-x Ick,\\z) + us(
t<x-y<z) 

k=\ 
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where u* is the velocity perturbation associated with each large scale structure and us is the 
velocity of the small scale turbulence, and we can define 

uk(x,t)=]   j nk(y,co,ß)e-m"^}-"izdo}dß 

o,(x,0=]   J   J üs(y,o},a,ß)e'"ol-'ax-ß:do)dadß 

where 

ük=(ük,vk,wk)       uk = 

with 

-i(avk
[-ßf)k) 

X2 
a=-(o/ck 

A 

nk(y,co,ß) = - J Bkiy, ,o,ß)[Gv(y I y, ^ rfy, 

and for the small scale turbulence 

'ißh. us = {ut,0,Wi) W. ~ 
A: H'. = 

a--ai/ck 

-'("Is 
X2 

-i{ßvk'+af\k) 

X2 

fis = ] C(y,)G„(yly,Kyi 
a=-a>/ct 

(18) 

(19) 

(20) 

(21) 

An example of the velocities associated with a large scale structure is given in Figure 4 where it 
is seen that at this frequency and wavenumber all three components are of similar magnitude. At 
lower frequencies the normal velocity is relatively smaller, and at higher frequencies the normal 
velocity dominates the result. 

3.6 Modeling the Non Linear Terms and Statistical Averages 

3.6.1 Non Linear Terms 
The non linear terms in the above analysis are unknown and so we must resort to some type of 
modeling to approximately account for their characteristics. The non linear terms may be both 
sources and sinks of energy and we must delineate between these effects. The reduction of 
energy in the flow can be modeled in the same way that we model non linear turbulent flow 
terms in the steady RANS equations, by introducing an eddy viscosity of the viscous term on the 
left of the OS equation and Squires equation. The sources, or production terms, remain on the 
right and it is these that we will model here. 

We will assume that the non linear terms are dominated by the small scale turbulence, which 
feeds the large scale structure, and model the non linear term as 
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Bk=a>"<ß--\G(y,yk)/G(yk,yk)\
2 

(22) 

where n, and n2 are modeling coefficients, which are found to be n,=n2=2 from comparison with 
experimental data. 

3.6.2 The Turbulent Kinetic Energy 

For the large scale structure modes we can define the turbulent stresses at the location >• by 
averaging velocity at a fixed point. Since the flow is statistically stationary in time and 
homogeneous in x and y, different frequencies, wavenumbers and modes must be uncorrelated 
and we obtain 

(23) 
-   -    K 

an.(y) = E\\ v(x,t) I21 = J   J   X K ' My>a>,ß) I2 dcodß 

Similar expression can be defined for the other velocity components and the turbulent kinetic 
energy for the large scale structures is given by 

Ko(y) = \]   J  X A2
k(\uk(y,<a,ß)\2 +\vk(y,0),ß)\2 +\wk(y,(0,ß)\2)d(Odß 

*•-«,-*.   k=\ 

The total kinetic energy is then given by 

K(y) = K0(y)+Ks(y) 

where KS is the kinetic energy of the small scale structures. 

Similarly the spectrum of the velocity fluctuations is given by 

(24) 

(25) 

(26) 

S,,U»..v)=J   X A2
k\vk(y,co,ß)\2dß 

To evaluate these expressions we need to accurately integrate over the wavenumber ß. We can 
show that all terms in the integral are a function of ß and so the integrals can be carried out over 
the half range 0</k°°. Furthermore to reduce the computational effort we can use logarithmic 
steps in wavenumber to extend the integration over a wider range of wavenumbers for a given 
number of computations. 

3.63 Surface Pressure Spectra 

The surface pressure spectrum can be calculated from the solution to Poissons equation 
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(27) 
p"-X2p = ipavU'-pV.b 

It is argued that the linear term will be of order U/u larger than the non linear term on the right 
side of this equation, and since this is directly proportional to the normal velocity, it follows that 
the surface pressure is determined exclusively by the large scale structures in the flow because 
the small scale turbulence is parallel to the mean flow. This has important modeling implications 
because it implies that the convection speed of the large scale structures vary from near zero to 
the outer stream velocity. However it does not relate the scale of the large scale structure to its 
convection speed because nothing has been assumed about the scale of the structure in the jr 
direction. 

To obtain the surface pressure we first need to solve equation (27) subject to the boundary 
condition that p'=0 on y-0. If the non linear tern is ignored in comparison with the linear term 
then we obtain 

(28) 

P(y) = T}j ipaU'(.v, )P(v,X*-*•' + e-"•')rfy, 
2A 

Then using the expansion in equations (17-19) the surface pressure becomes 
(29) 

MO = S Ak\   J    -f-\ UXyi)vk(yi)e-x> e^'dy^ßdü) 

These results can also be used to calculate the frequency spectrum of the surface pressure 
fluctuations. Since the modes are uncorrelated this is defined as 

(30) 

V°»=I^J pa 
T J U\y,)vk{y,)e-^dy, dß 

3.7 Comparison with Experimental Results 

The model given here was compared to experimental measurements made in the stability wind 
tunnel at Virginia Tech, as reported Awasthi et al (2011). We will present results for a fully 
developed turbulent boundary layer with a Reynolds number of 1.73x10s. The mean velocity 
profile and the turbulent stresses as a function of displacement from the wall are shown in figure 
5. To compare the measurements to the theoretical model we still need to define the unknown 
coefficients Ak. To find these we can use equation (23) for the normal turbulent stress and use a 
least squares algorithm to fit the data to the model. The algorithm must be constrained so that 
Ak

2>0 and the number of coefficients must be less than the number of measurements points to 
obtain a converged result. Figure 6 shows the amplitude of each structure verses mode order k, 
and it is seen that the energy is distributed across the modes and no one mode dominates. The 
strongest contribution is from mode order 2, but this is only a factor of 2 above the other modes. 
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With these coefficients we can now estimate the turbulent kinetic energy (tke) from the large 
scale structures using equation (24). The result is shown in figure 7 and is compared to the 
measured tke. The difference is attributed to the tke from the small scale structures and this is 
also shown in figure 7. The result indicates that the energy is the small scale structures dominates 
the tke budget by a factor of about two. 

As an independent check on the validity of the results we can also calculate the spectrum of the 
normal velocity using equation (26) and this is compared to the measured results in figure 8 at 
three different locations in the boundary layer. The spectral shape appears to be well modeled by 
this approach, and is an interesting result because no spectral modeling or lengthscales have been 
required to make this calculation. 

The prediction of the unsteady flow have also been applied to a boundary layer downstream of a 
forward facing step as measured by Awasthi et al (2011). Figure 9 shows the boundary layer 
profile and the distributions of turbulent stresses at nine step heights downstream of the step. The 
profiles are distinctly different from those for the undisturbed boundary layer shown in figure 5. 
The breakdown of the tke between small and large scale turbulence is shown in figure 10, and 
this is clearly dominated by the large scale structure tke as distinct from the small scale tke. This 
gives an important contrast to the results for the undisturbed boundary layer that was dominated 
by the small scale tke. In figure 11 the spectra of the vertical velocity fluctuations is given at 
three different heights in the boundary layer. In this case the spectra show significant level 
differences at different locations across the boundary layer, and the theory follows the trend in 
the measurements, as well as providing the spectral shape. In contrast the results for the 
boundary layer 36 step heights downstream of the step (figure 12) show that the vertical velocity 
spectra are similar at all locations, similar to the undisturbed boundary layer. 

Finally in figure 13 we show the estimates of the surface pressure spectra for the undisturbed 
boundary layer, and the boundary layer at 9 and 36 step heights downstream of the step. Given 
the good predictions of the vertical velocity one might expect the surface pressure spectra to be 
well predicted as well, given the relationship specified by equation (30). However the only 
reasonable prediction is for the undisturbed boundary layer at low frequencies. However, the 
analysis given here, and the measurements have only included the turbulence in the outer part of 
the boundary layer and have not considered the viscous sublayer and the log law region, which 
are closest to the wall and will dominated the terms in equation (30). It is not surprising therefore 
that the predicted surface pressure spectra, that are dominated by near wall effects, are not well 
predicted by this method. 

3.8 Conclusions 

In this study we have made use of the unsteady part of the RANS equations to model the flow in 
a boundary and downstream of a forward facing step. It has been shown that the flow can be 
broken down into large and small scale turbulence. The large scale turbulent structures are 
convected at their own fixed speed, while the small scale turbulence is uncorrelated from point to 
point in the vertical direction, and convected at the local flow speed. The energy balance 
between these two mechanisms is dominated by the small scale turbulence for the undisturbed 
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boundary layer, but in the case of the flow down stream of a step results are quite different. At 9 
step heights downstream of the step the large scale turbulence dominates, indicating that the 
disturbances generated by the step are dominating the flow. 

While the estimates of the vertical velocity compare well with the measurements, the surface 
pressure spectra at different locations downstream of the step are not as well estimated. The 
explanation for this is that the model has not included the inner layers where the turbulent 
structures are expected to dominate the surface pressure fluctuations. 
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Figure 1: The Greens functions for a boundary layer flow at a Reynolds number of 5x 10s, 
frequency co=\ and wavenumbers a=-l.285,ß=l.Left figure is the Greens function for the OS 
equation, right figure is the interaction Greens function defined by equation (12). 
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Figure 2: The Greens function for Squires equation for a boundary layer flow at a Reynolds 
number of 5xl0\ frequency co=\ and wavenumbers a=-l.285,ß=l. 
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Figure 3: The Greens functions for a boundary layer flow at a Reynolds number of 5x 10s, 
frequency 0)=Q. 1 and wavenumbers a= -0.1285,ß=l.Left figure is the Greens function for the OS 
equation, right figure is the interaction Greens function defined by equation (12). 
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Figure 4: The three velocity components for a large scale structure at GJ= 10,0?=-12.85, ^3=10 red 
is v, black is u, blue is w 
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Figure 5: The upper figure shows the boundary layer mean velocity profile measured in the VT 
Stability wind tunnel at a Reynolds number of 1.73x10s . the lower figure shows the measured 
turbulent stresses. Red is v2, green is w2 and black is u2. 
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Figure 6: The velocity mode amplitudes for a boundary layer flow at a Reynolds number of 
1.73x10s. 
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Figure 7: The turbulent kinetic energy budget for a boundary layer flow at a Reynolds number of 
5xl05 showing the breakdown between the energy in the large scale structures and small scale 
turbulence. 
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Figure 8: The normal velocity spectra for a boundary layer flow at a Reynolds number of 
1.73x10s at three different location in the boundary layer. Lines are experimental measurements 
and dots are the model estimates. 
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Figure 9: The upper figure shows the boundary layer mean velocity profile measured in the VT 
Stability wind tunnel 9 step heights downstream of a forward facing step, at a Reynolds number 
of 1.73xl05. The lower figure shows the measured turbulent stresses. Red is v2, green is w2 and 
black is u2. 
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Figure 10: The turbulent kinetic energy budget for a boundary layer flow 9 step heights 
downstream of a forward facing step at a Reynolds number of 1.73x 10s showing the breakdown 
between the energy in the large scale structures and small scale turbulence. 
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Figure 11: The normal velocity spectra for a boundary layer flow 9 step heights downstream of a 
forward facing step at a Reynolds number of 1.73x105 at three different location in the boundary 
layer, y/S =0.0672, 0.2353,0.5379. Lines are experimental measurements and dots are the model 
estimates. 
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Figure 12: The normal velocity spectra for a boundary layer flow 36 step heights downstream of 
a forward facing step at a Reynolds number of 1.73xl05 at three different location in the 
boundary layer, y/S -0.0672, 0.2353,0.5379. Lines are experimental measurements and dots are 
the model estimates. 
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Figure 13: The surface pressure spectra for a boundary layer flow. Black line (measurements) 
and (predictions) dots are for the undisturbed boundary layer, blue line (measurements) and 
(predictions) dots are at 9 step heights downstream of a forward facing step, and red line 
(measurements) and (predictions) dots are at 36 step heights downstream. All cases are at a 
Reynolds number of 1.73xl05 at three different location in the boundary layer, y/S =0.0672, 
0.2353,0.5379. 
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